Modified Logarithmic Sobolev Inequalities in Discrete Settings
نویسندگان
چکیده
Motivated by the rate at which the entropy of an ergodic Markov chain relative to its stationary distribution decays to zero, we study modified versions of logarithmic Sobolev inequalities in the discrete setting of finite Markov chains and graphs. These inequalities turn out to be weaker than the standard log-Sobolev inequality, but stronger than the Poincare’ (spectral gap) inequality. We show that, in contrast with the spectral gap, for bounded degree expander graphs, various log-Sobolev constants go to zero with the size of the graph. We also derive a hypercontractivity formulation equivalent to our main modified log-Sobolev inequality. Along the way we survey various recent results that have been obtained in this topic by other researchers.
منابع مشابه
Modi!ed logarithmic Sobolev inequalities for some models of random walk!
Logarithmic Sobolev inequalities are a well-studied technique for estimating rates of convergence of Markov chains to their stationary distributions. In contrast to continuous state spaces, discrete settings admit several distinct log Sobolev inequalities, one of which is the subject of this paper. Here we derive modi!ed log Sobolev inequalities for some models of random walk, including the ran...
متن کاملLogarithmic Harnack inequalities∗
Logarithmic Sobolev inequalities first arose in the analysis of elliptic differential operators in infinite dimensions. Many developments and applications can be found in several survey papers [1, 9, 12]. Recently, Diaconis and Saloff-Coste [8] considered logarithmic Sobolev inequalities for Markov chains. The lower bounds for log-Sobolev constants can be used to improve convergence bounds for ...
متن کاملLogarithmic Sobolev Inequalities for Infinite Dimensional Hörmander Type Generators on the Heisenberg Group
Abstract. The Heisenberg group is one of the simplest sub-Riemannian settings in which we can define non-elliptic Hörmander type generators. We can then consider coercive inequalities associated to such generators. We prove that a certain class of nontrivial Gibbs measures with quadratic interaction potential on an infinite product of Heisenberg groups satisfy logarithmic Sobolev inequalities.
متن کاملModified logarithmic Sobolev inequalities on R F . Barthe and
We provide a sufficient condition for a measure on the real line to satisfy a modified logarithmic Sobolev inequality, thus extending the criterion of Bobkov and Götze. Under mild assumptions the condition is also necessary. Concentration inequalities are derived. This completes the picture given in recent contributions by Gentil, Guillin and Miclo.
متن کامل